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Abstract. We consider the classicalW(2)
4 algebra from the integrable system viewpoint. The

integrable evolution equations associated with theW
(2)
4 algebra are constructed and the Miura

maps and consequent modifications are presented. Modifying the Miura maps, we supply a free
field realization for the classicalW(2)

4 algebra. We also construct the corresponding Toda-type
integrable systems.

1. Introduction

Integrable systems of nonlinear differential equations have been studied extensively during
the last three decades [10]. These are equations which possess remarkable analytical,
geometric and algebraic properties. An even more remarkable fact is that this theory brings
a number of diverse research fields together and finds applications in several branches. The
interaction between integrable system theory andW algebra theory is just one of many
fascinating points which have attracted much attention recently [4, 21, 12].

Wn algebra, which is a higher-spin generalization of Virasoro algebra, has been
introduced recently by Zamolodchikov and colleagues [21]. It plays an important role
in the theory of two-dimensional quantum gravity and matrix models.Wn algebra may
be constructed via the Hamiltonian reduction approach from theWZW model [4]. Novel
W algebras exist which involve fields with fractional spins. These are referred to asW(l)

n

algebras. The first such example is theW(2)
3 algebra of Polyakov–Bershadsky [19], which

consists of four fields: the energy–momentum tensor, two bosonic fields of spin3
2 and a

spin-1U(1) current.
Gervais [12] was the first to notice the inter-relation between theKdV equation and

the Virasoro algebra. More precisely, the second Poisson bracket of theKdV equation
is equivalent to the classical Virasoro algebra. This result has been generalized and the
equivalence of the classicalWn algebra and the second Poisson bracket of the Gelfand–
Dickey hierarchy discovered [15, 2]. Thus, a unified representation of the classicalWn

algebra is available. This remarkable connection provides new insight into both theories.
For example, constructing a new type of integrable system may lead to a new type ofW

algebra, andvice versa. Another important point is that the Miura map, which plays a
central role in soliton theory, often provides free field realization for the correspondingW

algebra. Noticing the connection of theW algebras and integrable evolution equations, it is
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not surprising that a correspondence between theW algebras and Toda-type systems exists.
We refer to [4] for more details.

While we have a unified description of the classicalWn algebra by means of the Gelfand–
Dickey bracket, such a result is still lacking for theW(l)

n algebra. Therefore, this algebra
deserves to be studied for smalln andl, aiming to get a better understanding of the general
case. The present paper investigates theW

(2)
4 algebra. Generally speaking,W(l)

n algebras are
given by differentsl(2) embedding intosl(n). The form of theW(2)

4 algebra is inferred in
[1], but its explicit form is presented by Bakas and Depireux [3] by means of a Hamiltonian
reduction method. We notice that Depireux and Mathieu [9] discussed theW(l)

n algebra
from the integrable system viewpoint. Their method is to exchange the evolution parameter
of the integrable equations. They shown that this method is successful for the classical
W

(3)
4 algebra, but fails in the case of the classicalW

(2)
4 algebra. We will fill this gap in this

paper and our method starts with the specification of the spectral problem. Both nonlinear
evolution equations and the Toda type of systems will be given explicitly for theW

(2)
4

algebra.
As is known, it is important to have a free field realization for a givenW algebra so that

one may quantize it. In many cases, the Miura map serves as a free field realization. We
will see that the standard Miura map does not give us free field realization of the classical
W

(2)
4 algebra, but its proper modification does. A by-product is the free field realization for

theW algebra associated with a matrix Schrödinger operator.
The paper is arranged as follows. We recall the explicit form of the classicalW

(2)
4 algebra

in section 2. In section 3, we construct the hierarchy of nonlinear evolution equations for
this algebra. Section 4 is intended to construct its free field realization. The integrable
systems of Toda type are presented in section 5. The final section contains some comments.

For simplicity, we only give non-vanishing commutator relations for Poisson bracket
algebras. Also,∂ always denotes the partial derivative with respect tox and all the fields
are functions ofx except those specified explicitly.

2. The classicalW (2)
4 algebra

We recall the classicalW(2)
4 algebra in this section. It was presented by Bakas and Depireux

[3] by means of a Hamiltonian reduction approach. This algebra involves seven fields with a
spin content of( 1

2, 1, 3
2,

3
2, 2, 2, 5

2). In this paper, we are concerned with its twisted version:

{T (x), T (y)} = (∂3 + T ∂ + ∂T )δ(x − y)

{T (x), v(y)} = ( 1
2∂

3 − 3
2H∂

2 + v∂ + ∂v + w∂p − p∂w −Hxx − 2Hx∂)δ(x − y)

{T (x), q(y)} = ( 1
2∂

2w + q∂ + ∂q)δ(x − y) {T (x), p(y)} = p∂δ(x − y)

{T (x), r(y)} = ( 1
2∂

2p + r∂ + ∂r)δ(x − y) {T (x), w(y)} = w∂δ(x − y)

{T (x),H(y)} = H∂δ(x − y)

{v(x), v(y)} = ( 3
4∂

3 − 3
4H∂H + v∂ + ∂v − 3

4Hxx − 3
2Hx∂)δ(x − y)

{v(x), q(y)} = ( 3
4∂

2w + 3
4H∂w + ∂q +Hq + wv)δ(x − y)

{v(x), r(y)} = (−p∂2 − 1
4∂

2p + p∂H − pv − 1
4H∂p + r∂ − rH)δ(x − y)

{v(x), p(y)} = (−p∂ + r)δ(x − y) {v(x), w(y)} = −qδ(x − y) (2.1)

{v(x),H(y)} = − 1
2(∂ +H)∂δ(x − y) {q(x), q(y)} = − 3

4w∂wδ(x − y)

{q(x), r(y)} = (∂3 − ∂2H −H∂2 + ∂v + u∂ −H(u+ v)+H∂H + 1
4w∂p)δ(x − y)
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{q(x), p(y)} = ((∂ −H)∂ − v + ut)δ(x − y) {q(x), w(y)} = 0

{q(x),H(y)} = ( 1
2w∂ − q)δ(x − y) {r(x), r(y)} = − 3

4p∂pδ(x − y)

{r(x), w(y)} = ((∂ −H)∂ + v − u)δ(x − y) {r(x), p(y)} = 0

{r(x),H(y)} = 1
2(−p∂ + r)δ(x − y) {w(x),w(y)} = 0

{w(x), p(y)} = −2(∂ −H)δ(x − y) {w(x),H(y)} = −wδ(x − y)

{p(x), p(y)} = 0 {p(x),H(y)} = pδ(x − y)

{H(x),H(y)} = −∂δ(x − y).

It is easy to see that the above algebra is conformal with the Virasoro generatorT . The
spin content of this version is now(1, 1, 1, 2, 2, 2, 2).

3. The integrable hierarchy of evolution equations

In order to derive an integrable hierarchy of nonlinear evolution equations associated with
theW(2)

4 algebra, we specify the associated spectral problem first. Our spectral problem is

8x =


0 0 −1 0
0 0 0 −1

u+ λ q H + h w

r v + λ p −H + h

8. (3.1)

The motivation for choosing the above form of the spectral problem comes from Bakas
and Depireux [3]. We note that this spectral problem may be rewritten equivalently in Lax
operator form:

Lψ ≡
(
∂2 −

[
H + h w

p −H + h

]
+

[
u q

r v

])
ψ = −λψ. (3.2)

This is nothing but the matrix Schrödinger problem. With (3.1) or (3.2) we may use the
standard approaches to construct the associated flows and Hamiltonian (Poisson) structures.
Indeed, we may either follow the method described in [7] to calculate the two Poisson
tensors or construct the matrix generalized Gelfand–Dickey brackets as in [11, 5]. Since
this calculation is straightforward, we just list the results

ftn = {f,Hn+1}0 = {f,Hn}1 f = u, v, q, r, p,w,H, h.

Here two Poisson brackets are defined by

{u(x), u(y)}0 = −2∂δ(x − y) {u(x), q(y)}0 = wδ(x − y)

{u(x), r(y)}0 = −pδ(x − y) {v(x), v(y)}0 = −2∂δ(x − y)

{v(x), q(y)}0 = −wδ(x − y) {v(x), r(y)}0 = pδ(x − y)

{q(x), r(y)}0 = −2(∂ +H)δ(x − y).

All other brackets vanish and

{u(x), u(y)}1 = (∂3 − (H + h)∂(H + h)+ u∂ + ∂u+ (H + h)xx + 2(H + h)x∂)δ(x − y)

{u(x), v(y)}1 = (−w∂p − wr + qp)δ(x − y)

{u(x), q(y)}1 = (−w∂2 − w∂(H + h)− wu+ q∂ + q(H + h))δ(x − y)

{u(x), r(y)}1 = ((∂ −H − h)(∂p + r)+ up)δ(x − y)

{u(x),w(y)}1 = (−w∂ + q)δ(x − y) {u(x),H(y)}1 = 1
2(∂ −H − h)∂δ(x − y)

{u(x), p(y)}1 = −rδ(x − y) {u(x), h(y)}1 = 1
2(∂ −H − h)∂δ(x − y)
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{v(x), v(y)}1 = (∂3 − (H − h)∂(H − h)+ v∂ + ∂v − (H − h)xx − 2(H − h)x∂)δ(x − y)

{v(x), q(y)}1 = ((∂ +H − h)(∂w + q)+ wv)δ(x − y)

{v(x), r(y)}1 = (−p∂2 + p∂(H − h)− pv + r(∂ −H + h))δ(x − y)

{v(x), w(y)}1 = −qδ(x − y) {v(x),H(y)}1 = − 1
2(∂ +H − h)∂δ(x − y)

{v(x), p(y)}1 = (−p∂ + r)δ(x − y) {v(x), h(y)}1 = 1
2(∂ +H − h)∂δ(x − y) (3.3)

{q(x), q(y)}1 = −w∂wδ(x − y) {q(x), w(y)}1 = 0

{q(x), r(y)}1 = [∂3 − ∂2H −H∂2 + hxx + 2hx∂ + ∂v + u∂ −H(u+ v)− h(v − u)

+(H + h)∂(H − h)]δ(x − y)

{q(x), p(y)}1 = ((∂ −H − h)∂ − v + u)δ(x − y) {q(x), h(y)}1 = − 1
2w∂δ(x − y)

{q(x),H(y)}1 = ( 1
2w∂ − q)δ(x − y) {r(x), r(y)}1 = −p∂pδ(x − y)

{r(x), w(y)}1 = ((∂ +H − h)∂ + v − u)δ(x − y) {r(x), p(y)}1 = 0

{r(x),H(y)}1 = (− 1
2p∂ + r)δ(x − y) {r(x), h(y)}1 = − 1

2p∂δ(x − y)

{w(x),w(y)}1 = 0 {w(x), p(y)}1 = 2(−∂ +H)δ(x − y)

{w(x),H(y)}1 = −wδ(x − y) {w(x), h(y)}1 = 0 {p(x), p(y)}1 = 0

{p(x),H(y)}1 = pδ(x − y) {p(x), h(y)}1 = 0

{H(x),H(y)}1 = −∂δ(x − y) {H(x), h(y)}1 = 0 {h(x), h(y)}1 = −∂δ(x − y).

Hamiltonians may be calculated most easily from

Hn = 2

n

∫
tr res(Ln/2) dx ∀n > 1

where tr and res mean taking matrix trace and the coefficient of the term∂−1, respectively.
The operator is defined in equation (3.2).

The classicalW(2)
4 algebra comes into play with the following observation: if we do

the reductionh = 0 for the Poisson algebra (3.4), we obtain

{u(x), u(y)} = ( 3
4∂

3 − 3
4H∂H + u∂ + ∂u+ 3

4Hxx + 3
2Hx∂)δ(x − y)

{u(x), v(y)} = (−w∂p − wr + qp − 1
4(∂

3 − ∂2H −H∂2 +H∂H))δ(x − y)

{u(x), q(y)} = (−w∂2 − w∂H − wu+ q∂ + qH − 1
4(∂ −H)∂w))δ(x − y)

{u(x), r(y)} = ((∂ −H)(∂p + r)+ up − 1
4(∂ −H)∂p)δ(x − y)

{u(x),w(y)} = (−w∂ + q)δ(x − y) {u(x), p(y)} = −rδ(x − y)

{u(x),H(y)} = 1
2(∂ −H)∂δ(x − y)

{v(x), v(y)} = ( 3
4∂

3 − 3
4H∂H + v∂ + ∂v − 3

4Hxx − 3
2Hx∂)δ(x − y)

{v(x), q(y)} = ( 3
4∂

2w + 3
4H∂w + ∂q +Hq + wv)δ(x − y)

{v(x), r(y)} = −(p∂2 + 1
4∂

2p − p∂H + pv + 1
4H∂p − r∂ + rH)δ(x − y)

{v(x), p(y)} = (−p∂ + r)δ(x − y) {v(x), w(y)} = −qδ(x − y) (3.4)

{v(x),H(y)} = − 1
2(∂ +H)∂δ(x − y) {q(x), q(y)} = − 3

4w∂wδ(x − y)

{q(x), r(y)} = [∂3 − ∂2H −H∂2 + ∂v + u∂ −H(u+ v)+H∂H + 1
4w∂p]δ(x − y)

{q(x), p(y)} = ((∂ −H)∂ − v + u)δ(x − y) {q(x), w(y)} = 0

{q(x),H(y)} = ( 1
2w∂ − q)δ(x − y)

{r(x), w(y)} = ((∂ −H)∂ + v − u)δ(x − y) {r(x), r(y)} = − 3
4p∂pδ(x − y)

{r(x),H(y)} = − 1
2(p∂ − r)δ(x − y) {r(x), p(y)} = 0
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{w(x), p(y)} = 2(−∂ +H)δ(x − y) {w(x),w(y)} = 0

{w(x),H(y)} = −wδ(x − y) {p(x), p(y)} = 0

{p(x),H(y)} = pδ(x − y) {H(x),H(y)} = −∂δ(x − y).

This algebra is nothing but the classicalW(2)
4 algebra (2.1) with the fields redefined by

T = u+ v −H 2 − pw v = v p = p w = w

H = H q = q r = r.

Remark. We should emphasize that the reduction involved here is the standard Dirac
reduction (see, for example, [17]).

Thus, we rediscover the classicalW(2)
4 algebra from the viewpoint of integrable systems.

Because of this equivalence, we also call the Poisson algebra (3.4)W
(2)
4 . The explicit form

of integrable hierarchy associated with it can be read off from the hierarchy (3). Here, we
just give the first non-trivial flow:

ut = 1
2(−HHx +Hxx + 2ux − wpx − wr + qp)

vt = 1
2(−HHx +Hxx + 2vx − wxp + wr + qp)

qt = 1
2(−Hwx + wxx + 2qx + wHx − 2Hq + wu− wv)

rt = 1
2(Hpx + pxx + 2rx − pHx − pu+ pv + 2rH)

wt = pt = Ht = 0.

(3.5)

Remark. We note that in the above system the time evolution of the fields(w, p,H)

is trivial. This means that the dynamical system may be reduced to the submanifold of
(u, v, q, r). In fact, this is a general phenomenon: the whole hierarchy is reducible to the
submanifold(u, v, q, r) (see [5]).

4. The free field realization of theW (2)
4 algebra

For a givenW algebra, it is important to construct a free field realization. As is well known,
the Miura-type map serves as a free field realization in many cases. Thus, to construct such
a realization for ourW(2)

4 algebra (3.4), we start with the derivation of Miura maps for the
related hierarchy.

Let us make the following factorization [11, 5]:

L = (∂ −M)(∂ −N)

whereL is the matrix Schr̈odinger operator given by (3.2),M = [ g1 k
l g2

], N = [ m1 n
s m2

].

Then, the transformation between field variables, which is a Miura map, reads

u = g1m1 + ks −m1x v = ln+ g2m2 −m2x

q = g1n+ km2 − nx r = lm1 + g2s − sx w = k + n

p = l + s H = 1
2(g1 +m1 − g2 −m2) h = 1

2(g1 + g2 +m1 +m2).

(4.1)

The modified Poisson bracket may be calculated from the bracket directly following [11, 5].
The resulting non-vanishing brackets are given by

{mi(x),mi(y)} = −∂δ(x − y) {mi(x), n(y)} = ±nδ(x − y)

{mi(x), s(y)} = ∓sδ(x − y) {n(x), s(y)} = (−∂ +m1 +m2)δ(x − y)
(4.2a)

{gi(x), gi(y)} = −∂δ(x − y) {gi(x), k(y)} = ±kδ(x − y)

{gi(x), l(y)} = ∓sδ(x − y) {k(x), l(y)} = (−∂ + g1 + g2)δ(x − y)
(4.2b)
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wherei = 1, 2.
It can be directly verified that the Miura map (4.1) is a Hamiltonian or Poisson map.

That is, it maps the modified Poisson bracket (4.2a, b) to the Poisson bracket (3.3).
Up to now, all these are known and standard (see [11, 5]). However, we note that

unlike the scalar case, the present Miura map (4.1) does not supply us with a free field
realization for the Poisson algebra (3.3) although it does simplify this algebra greatly. To
obtain such a realization, we need to introduce further coordinate transformations. Since our
Lax operator has been factorized already, we are not able to obtain further transformations
via the factorization. To proceed, we notice the special structure of the Poisson algebra
(4.2a, b): it consists of two closed subalgebras (4.2a) and (4.2b). Thus, we only need to
work on one of them, say the subspace(m1, m2, n, s) with the algebra (4.2a). Now, our
observation is that the following transformation

m̄1 = m1 +m2 m̄2 = m1 −m2 n̄ = n s̄ = s (4.3a)

maps (4.2a) to

{m̄1(x), m̄1(y)} = −2∂δ(x − y) (4.4a)

{m̄2(x), m̄2(y)} = −2∂δ(x − y) {m̄2(x), n̄(y)} = 2n̄δ(x − y)

{m̄2(x), s̄(y)} = −2s̄δ(x − y) {n̄(x), s̄(y)} = (−∂ + m̄2)δ(x − y).
(4.4b)

The nice feature here is that the Poisson bracket algebra (4.2a) is decoupled by the
transformation (4.3a). That is, the algebra (4.4a, b) consists of two parts: aU(1) current
m1 and thesl(2) current algebra (4.4b). Thus, we may use Wakimoto construction [20]
to get the free field realization. The same device works with the other subspace(gi, k, l).
Summarizing, we have

m̄1 = ξ m̄2 =
√

2α + 2βγ n̄ = −βγ 2 + γx −
√

2γα s̄ = β (4.3b)

and

ḡ1 = g1 + g2 ḡ2 = g1 − g2 k̄ = k l̄ = l (4.5a)

ḡ1 = ζ ḡ2 =
√

2µ+ 2ην k̄ = −νη2 + ηx −
√

2µη s̄ = ν. (4.5b)

The final bracket is defined in the coordinates(ξ, α, γ, β, ζ, µ, η, ν) by

{ξ(x), ξ(y)} = {ζ(x), ζ(y)} = −2∂δ(x − y)

{α(x), α(y)} = {µ(x), µ(y)} = −∂δ(x − y)

{γ (x), β(y)} = {η(x), ν(y)} = −δ(x − y).

(4.6)

Thus, we reach the free field realization for the Poisson bracket algebra (3.3). We stress
that the transformations (4.1), (4.3) and (4.5) together serve as the mapping to a free field
realization.

Next we turn to our main object: the classicalW(2)
4 algebra. Since this Poisson algebra

is obtainable from the more general one (3.3) by reduction, we expect that some kind of
reduction or constraint of the Miura map (4.1) simplifies the algebra (3.4). Thus, let us first
do the following recoordinating:

(m1, m2, n, s, g1, g2, k, l) → (m1, m2, n, s, g1, k, l, E) (4.7)
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whereE = m1 + m2 + g1 + g2. Then we perform the Dirac reductionE = 0 for the
transformed algebra. Under this new coordinate, the algebra becomes

{mi(x),mi(y)} = {g1(x), g1(y)} = − 3
4∂δ(x − y)

{m1(x),m2(y)} = {mi(x), g1(y)} = − 1
4∂δ(x − y)

{mi(x), n(y} = ±nδ(x − y) {mi(x), s(y)} = ∓sδ(x − y)

{n(x), s(y)} = (−∂ +m1 +m2)δ(x − y)

{g1(x), k(y)} = kδ(x − y) {g1(x), l(y)} = lδ(x − y)

{k(x), l(y)} = (−∂ + 2g1 +m1 +m2)δ(x − y).

(4.8)

Using the transformation (4.1) and taking the above reduction into consideration, we
conjecture that the Poisson bracket algebra (4.8) is related to the algebraW

(2)
4 (3.4) by

the following transformation:

u = g1m1 + ks −m1x v = ln−m2(m1 +m2 + g1)−m2x

q = g1n+ km2 − nx r = lm1 − s(g1 +m1 +m2)− sx

w = k + n p = l + s H = g1 +m1.

(4.9)

This conjecture can be verified by tedious but straightforward calculation.
As above, this realization does not qualify as a free field realization and we need

to simplify (4.8) further to reach such a position. Our observation is that the following
coordinate transformation(m1, m2, n, s, g1, k, l) → (m̂1, m̂2, n̂, ŝ, ĝ1, k̂, l̂)

m̂1 = m1 +m2 m̂2 = m1 −m2 n̂ = n ŝ = s

ĝ1 = 2g1 +m1 +m2 k̂ = k l̂ = l
(4.10)

brings (4.8) into the following form:

{m̂1(x), m̂1(y)} = −∂δ(x − y) (4.11a)

{m̂2(x), m̂2(y)} = −2∂δ(x − y) {m̂2(x), n̂(y)} = 2n̂δ(x − y)

{m̂2(x), ŝ(y)} = −2ŝδ(x − y) {n̂(x), ŝ(y)} = (−∂ + m̂2)δ(x − y)
(4.11b)

{ĝ1(x), ĝ1(y)} = −2∂δ(x − y) {ĝ1(x), k̂(y)} = 2k̂δ(x − y)

{ĝ1(x), l̂(y)} = −2l̂δ(x − y) {k̂(x), l̂(y)} = (−∂ + ĝ1)δ(x − y).
(4.11c)

We see that the above algebra consists of three closed subalgebras: aU(1) current m̂1

and two copies ofsl(2) current algebra (4.11b, c). Once again, we may use the Wakimoto
construction directly for the algebra (4.11a, b, c). It reads as

m̂1 = θ m̂2 =
√

2θ1 + 2θ2θ3 n̂ = −θ2
2θ3 + θ2x −

√
2θ1θ2 ŝ = θ3

ĝ1 =
√

2ϑ1 + 2ϑ2ϑ3 k̂ = −ϑ2
2ϑ3 + ϑ2x −

√
2ϑ1ϑ2 l̂ = ϑ3

(4.12)

and the final algebra in coordinates(θ, θ1, θ2, θ3, ϑ, ϑ1, ϑ2, ϑ3) is

{θ(x), θ(y)} = {ϑ(x), ϑ(y)} = −∂δ(x − y)

{θ1(x), θ1(y)} = {ϑ1(x), ϑ1(y)} = −∂δ(x − y)

{θ2(x), θ3(y)} = {ϑ2(x), ϑ3(y)} = −δ(x − y).

(4.13)

Then, the composition of (4.9) and (4.10) with (4.12) supplies us the free field realization
for theW(2)

4 algebra (3.4).
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Remarks.
(1) As we can see, the first step of the construction is systematic while the remaining

steps aread hoc. Thus, it is interesting to find an entire systematic method to rediscover
the above results.

(2) This construction provides us with, as a by-product, a new proof of the Hamiltonian
nature of the structure (3.4).

(3) The modified hierarchies for each set of coordinates are easily calculated.
(4) With the free field realizations we may construct quantized algebras for the Poisson

algebra (3.4) and (3.3).

5. Toda-type theories connected withW (2)
4

In this section we shall construct the Toda-type theory connected with theW
(2)
4 algebra.

Precisely speaking, we shall construct a Toda theory which corresponds to two copies of
theW(2)

4 algebra: one copy is holomorphic, the other is anti-holomorphic. The construction
is based on the following observations. Recall that theW -basis of the holomorphic copy
of W(2)

4 used in [3] is arranged in the following Drinfeld–Sokolov gauge:

Q =


0 0 −1 0
0 0 0 −1
T1 G(+) U Z

Y T2 G(−) −U

 .

Similarly we can have aW basis of the anti-holomorphic copy ofW(2)
4 which can also be

arranged into the Drinfeld–Sokolov gauge

Q̄ =


0 0 T̄1 Ȳ

0 0 Ḡ(+) T̄2

−1 0 Ū Ḡ(−)

0 −1 Z̄ −Ū

 .

Let g be the solution of the following linear systems:

∂+g +Qg = 0 ∂−g + gQ̄ = 0.

We can easily see that the matrixg can be realized by the matrix elements

gba =
∑
i

f ia f̄
b
i

wheref ji and f̄ ji satisfy

∂xf
j
a = −f ja+2 ∂xf̄

b
j = −f̄ b+2

j a = 1, 2

andf̄ bi have a similar property. Define the main diagonal subdeterminants1a of the matrix
g, i.e.

1a =
∣∣∣∣∣∣
g1

1 . . . ga1
...

...

g1
a . . . gaa

∣∣∣∣∣∣
and, in particular,10 ≡ 1, we can prove, by tedious but direct calculations, that the matrix
T with the elements (here1a(i, j) denotes the algebraic co-minor of1a with respect to
g
j

i )

T ba ≡
√
1a−1

1a

a∑
l=1

1a(l, a)

1a−1
f ba
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satisfy the equations

∂±T = ±( 1
2∂±8+ exp(∓ 1

2 ad8)(9± + µ±))T (5.1)

where we have used the following abbreviations of notation:

8 =
3∑
i=1

φiHi φa = ln1a

9+ =
3∑

j=1

4∑
i=1

sign(i − j)ψ+
i AijEj ψ+

a = 1a+1(a, a + 1)

1a

9− =
3∑

j=1

4∑
i=1

sign(i − j)ψ−
i AijFj ψ−

a = 1a+1(a + 1, a)

1a

. (5.2)

Hi , Ei andFi are the standard Chevalley generators of the Lie algebraA3 written in the
defining representation,A is the matrix

A =


2 −1 0 0

−1 2 −1 0
0 −1 2 0
0 0 −1 0


andµ± are defined as

µ+ = 1
2

3∑
i,j=1

[Ei,Ej ] µ− = − 1
2

3∑
i,j=1

[Fi, Fj ].

Equation (5.1) can be viewed as the Lax pair ofW
(2)
4 Toda theory, with the explicit

solution of the Toda fields given by equation (5.2). The Toda field equation can be easily
obtained from the compatibility condition of the Lax pair (5.1). The result reads

∂+∂−8+ [ead8(9−),9+] + [ead8(µ−), µ+] = 0

∂−9+ − [µ+, ead8(9−)] = 0

∂+9− − [ead8(9+), µ−] = 0.

In terms of the component fields, the above equations read (K is the Cartan matrix ofA3)

∂+∂−φj −
4∑

i,k=1

sign(i − j) sign(k − j)ψ+
i Aijψ

−
k Akjω

j +
3∑

l=1l 6=j
ωlωjKij = 0

∂−ψ+
j −

4∑
k=1

sign(k − j)ψ−
k Akjω

j = 0

∂+ψ−
j −

4∑
k=1

sign(k − j)ψ+
k Akjω

j = 0

ωj ≡ exp(−
3∑
i=1

φiKij ) (j = 1, 2, 3)

∂−ψ+
4 = ∂+ψ−

4 = 0.

Remarks.
(1) The above construction of Toda-type theory is essentially an extension of the

technique ofW surfaces, which was first developed by Gervais and Matsuo [13] in the
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standardWN cases. Thus the construction given here not only presents theW
(2)
4 Toda

equation but also theW(2)
4 surface in the sense of [13].

(2) Toda-type equations associated with generalW
(2)
N algebras have already been studied

by one of the authors (LC) and collaborators in several papers [14]. However, those
equations restricted to the case ofN = 4 lack the fieldsψ±

4 , thus do not really correspond
to W(2)

4 algebra. The present equations overcome this shortcoming.
(3) The functionsf ia andf̄ ai can be shown to satisfy two commuting families of classical

exchange algebra fora = 1, 2. For example, the holomorphic family of exchange algebra
reads

{f ia (x), f jb (y)} = − 1
8f

i
a (x)f

j

b (y) sign(x − y)+ f ja (x)f
i
b (y)[θ(i − j)θ(x − y)

−θ(j − i)θ(y − x)] a, b = 1, 2 (5.3)

where

θ(a − b) ≡


1
2 (a − b = 0)

0 (a − b < 0)

1 (a − b > 0)

sign(a − b) = θ(a − b)− θ(b − a). (5.4)

Such exchange algebras can be used to reconstructW
(2)
4 algebra since one can always write

theW basis ofW(2)
4 algebra in terms of appropriate determinants consisting of the above

functions. This construction ofW algebras can also be extended to any classicalW
(l)
N

algebra [8]. Since the classical exchange algebra is the origin of the quantum group, it may
also be possible to relate quantumW algebras and quantum groups in terms of a quantized
version of such constructions.

(4) The canonical Poisson structure for theW(2)
4 Toda fields can also be obtained from

the exchange relation (5.3) and the explicit solution (5.2) of the field equations.

6. Conclusions

In this paper we have constructed both the integrable evolution equations and the
corresponding Toda theory associated with theW(2)

4 algebra. Miura maps are presented
in connection with theW(2)

4 evolution equations, which in turn give a free field realization
of W(2)

4 algebra.
We have shown that theW(2)

4 algebra, for which the exchange of evolution parameter
approach failed, can be studied through the matrix Lax operator. This may be true for
the general classicalW(l)

n and deserves further consideration. Also, though the problem
considered here is only a specific case of theW -algebra–evolution equation–Toda system
connections, the constructions presented here again assure the widely adopted conjecture
that, given aW algebra, there must exist an associated system of evolution equations and
a corresponding Toda theory.

Besides what has been considered in the main text of this paper, we would like to
mention that there are still some unsolved problems, such as the connection between the
variables appearing in the evolution equations and the Toda fields. As theW

(2)
4 algebra is

much more complicated than the standardWN series, one should reasonably feel that such
connections are not so straightforward as in the standard case.



On the classicalW (2)
4 algebra 1463

Acknowledgments

One of us (QPL) would like to thank Drs C S Xiong and K Wu for helpful discussions.
It is our pleasure to thank the referees for their comments. This work is supported by the
Natural National Science Foundation of China.

References

[1] Bais F A, Tjin T and van Driel P 1991Nucl. Phys.B 357 632
[2] Bakas I 1989Commun. Math. Phys.123 627
[3] Bakas I and Depireux D A 1991 Proc. XXth Int. Conf. on Differential Geometric Methods in Theoretical

Physics (New York, June 1991)
[4] Balog J, Feh́er L, O’Raifeartaigh L, Forgacs P and Wipf A 1990Ann. Phys.203 76

Feh́er L, O’Raifeartaigh L, Ruelle P, Tsutsui I and Wipf A 1992Phys. Rep.222 1
Bouwknegt P and Schoutens K 1993Phys. Rep.223 183

[5] Bilal A 1994 Lett. Math. Phys.32 103
Bilal A 1994 Preprint Nonlocal Matrix Generalizations ofW -algebras hep-th/9403197

[6] Borona M, Liu Q P and Xiong C S Bonn-Th-9417Preprints SISSA-ISAS-118/94, AS-ITP-94-43, hep-
th/9408035

[7] Casati P, Magri F and Pedroni M 1991Contemporary Mathematicsvol 132 (Providence, RI: AMS)
[8] Chao L and Wang Y-SPreprint NWU-IMP in preparation
[9] Depireux D A and Mathieu P 1992Int. J. Mod. Phys.A 7 6053

[10] Dickey L A 1991 Soliton Equations and Hamiltonian Systems(Singapore: World Scientific)
Ablowitz M J and Segur H 1981Solitons and Inverse Scattering Transforms(Philadelphia, PA: SIAM)

[11] Feh́er L, Harnad J and Marshall I 1993Commun. Math. Phys.154 181
[12] Gervais J-L 1985Phys. Lett.160B 277
[13] Gervais J-L and Matsuo Y 1993Commun. Math. Phys.152 317
[14] Hou B-Y and Chao L 1993Int. J. Mod. Phys.A 7 7105

Chao L 1993Commun. Theor. Phys.20 221
Chao L and Hou B-Y 1994Ann. Phys., NY230 1
Hou B-Y and Chao L 1993Int. J. Mod. Phys.A 8 1105

[15] Mathieu P 1988Phys. Lett.208B 101
[16] Liu Q P 1994Phys. Lett.187A 373
[17] Liu Q P and Xiong C S 1994Phys. Lett.327B 257
[18] Olmedilla E, Martinez Alonso L and Guil F 1981Nuovo CimentoB 61 49
[19] Polyakov A M 1990 Int. J. Mod. Phys.A 5 833

Bershadsky M 1991Commun. Math. Phys.139 71
[20] Wakimoto M 1986Commun. Math. Phys.104 604
[21] Zamolodchikov A B 1985 Theor. Math. Phys.65 1205

Zamolodchikov A B and Fateev V A 1987 Nucl. Phys.B 280 644
Fateev V A and Lykyanov S L 1988Int. J. Mod. Phys.A 3 507


