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Abstract. We consider the classicavjz) algebra from the integrable system viewpoint. The
integrable evolution equations associated with m@ algebra are constructed and the Miura
maps and consequent modifications are presented. Modifying the Miura maps, we supply a free
field realization for the classicewf) algebra. We also construct the corresponding Toda-type
integrable systems.

1. Introduction

Integrable systems of nonlinear differential equations have been studied extensively during
the last three decades [10]. These are equations which possess remarkable analytical,
geometric and algebraic properties. An even more remarkable fact is that this theory brings
a number of diverse research fields together and finds applications in several branches. The
interaction between integrable system theory aWidalgebra theory is just one of many
fascinating points which have attracted much attention recently [4, 21, 12].

W, algebra, which is a higher-spin generalization of Virasoro algebra, has been
introduced recently by Zamolodchikov and colleagues [21]. It plays an important role
in the theory of two-dimensional quantum gravity and matrix modédls, algebra may
be constructed via the Hamiltonian reduction approach fromwhe model [4]. Novel
W algebras exist which involve fields with fractional spins. These are referred ¥as
algebras. The first such example is tg” algebra of Polyakov—Bershadsky [19], which
consists of four fields: the energy—momentum tensor, two bosonic fields ofgsp'm:i a
spin-1U (1) current.

Gervais [12] was the first to notice the inter-relation betweenkine equation and
the Virasoro algebra. More precisely, the second Poisson bracket afdthequation
is equivalent to the classical Virasoro algebra. This result has been generalized and the
equivalence of the classicdV, algebra and the second Poisson bracket of the Gelfand—
Dickey hierarchy discovered [15,2]. Thus, a unified representation of the clasgjcal
algebra is available. This remarkable connection provides new insight into both theories.
For example, constructing a new type of integrable system may lead to a new type of
algebra, andvice versa Another important point is that the Miura map, which plays a
central role in soliton theory, often provides free field realization for the corresponting
algebra. Noticing the connection of th# algebras and integrable evolution equations, it is
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not surprising that a correspondence betweeniithalgebras and Toda-type systems exists.
We refer to [4] for more detalils.

While we have a unified description of the classidalalgebra by means of the Gelfand—
Dickey bracket, such a result is still lacking for té" algebra. Therefore, this algebra
deserves to be studied for smaland!, aiming to get a better understanding of the general
case. The present paper investigateswrj@ algebra. Generally speaking, " algebras are
given by differents/(2) embedding intasi/(n). The form of therz) algebra is inferred in
[1], but its explicit form is presented by Bakas and Depireux [3] by means of a Hamiltonian
reduction method. We notice that Depireux and Mathieu [9] discussedVfhealgebra
from the integrable system viewpoint. Their method is to exchange the evolution parameter
of the integrable equations. They shown that this method is successful for the classical
w,> algebra, but fails in the case of the classiBgf’ algebra. We will fill this gap in this
paper and our method starts with the specification of the spectral problem. Both nonlinear
evolution equations and the Toda type of systems will be given explicitly fothﬁ%
algebra.

As is known, it is important to have a free field realization for a giVéralgebra so that
one may quantize it. In many cases, the Miura map serves as a free field realization. We
will see that the standard Miura map does not give us free field realization of the classical
Wf) algebra, but its proper modification does. A by-product is the free field realization for
the W algebra associated with a matrix Sgtinger operator.

The paper is arranged as follows. We recall the explicit form of the claslwij,zéblgebra
in section 2. In section 3, we construct the hierarchy of nonlinear evolution equations for
this algebra. Section 4 is intended to construct its free field realization. The integrable
systems of Toda type are presented in section 5. The final section contains some comments.

For simplicity, we only give non-vanishing commutator relations for Poisson bracket
algebras. Alsop always denotes the partial derivative with respect tand all the fields
are functions ofc except those specified explicitly.

2. The classicalW,? algebra

We recall the classican) algebra in this section. It was presented by Bakas and Depireux
[3] by means of a Hamiltonian reduction approach. This algebra involves seven fields with a
spin content of3, 1, 3, 3,2, 2, 3). In this paper, we are concerned with its twisted version:

.33,
(Tx), T} =@+ Td+3T)8(x — y)

{T(x),v(»)} = (30> = 3H3® + vd + dv + wdp — pdw — Hy, — 2H,3)8(x — )

{T(x), g} = (G3°w +qd + Ig)5(x — y) {T(x), p(y)} = pdd(x — y)

{(T(x), r(} = (39°p+rd +9r)d(x — y) {T @), w(y)} = wds(x — y)

{T(x), H(y)} = H3d(x — y)

), v} = (G* - 3HIH +vd +dv — 3H,, — SH,3)8(x — y)

), g} = Go*w + ZHow + g + Hg + wv)s(x — y)

v(x), r(»)} = (—pd*— 13%°p + pdH — pv — THdp +rd — rH)8(x — y)

{v(x), p(M)} = (=pd +1)d(x — y) {vx), w(y)} = —qd(x —y) (2.1)
{v(x), H(y)} = =30 + H)3s(x — y) {g(x), q(»)} = —Jwowd(x — y)

{qx),r()} = (3*—°H — H3* + dv +ud — H(u +v) + HOH + jwdp)§(x — y)
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{gx), p(»} = (@ — H)d —v+u)d(x —y) {gx), w(y)} =0
{gx), Hy)} = Gwd — q)8(x — y) {r@). r(»)} = =3 paps(x — y)
{r(x), w(y)} =(@—H)d+v—u)dx—1y) {r(x),p(»}=0
{r(x), Hy)} = 3(=pd + r)d(x — y) {w(x), w(y)} =0

{wx), p(y)} = =200 — H)§(x — y) {wx), HY)} = —wd(x —y)
{p(x),p(»}=0 {p(x), H(y)} = pd(x —y)

{H(x), H(y)} = —33(x — y).

It is easy to see that the above algebra is conformal with the Virasoro gen&ratdhe
spin content of this version is noyl, 1, 1, 2, 2, 2, 2).

3. The integrable hierarchy of evolution equations

In order to derive an integrable hierarchy of nonlinear evolution equations associated with
the Wf) algebra, we specify the associated spectral problem first. Our spectral problem is

0 0 -1 0
0 0 0 -1

©x = u+ A q H+h w ®. (3.1)
r v+ A )4 —-H+h

The motivation for choosing the above form of the spectral problem comes from Bakas
and Depireux [3]. We note that this spectral problem may be rewritten equivalently in Lax
operator form:

L¢E<az—[H;h _Hw+h}+[;‘ z:|>l//=—)ﬂ/f. (3.2)

This is nothing but the matrix Scbdinger problem. With (3.1) or (3.2) we may use the
standard approaches to construct the associated flows and Hamiltonian (Poisson) structures.
Indeed, we may either follow the method described in [7] to calculate the two Poisson
tensors or construct the matrix generalized Gelfand—Dickey brackets as in [11,5]. Since
this calculation is straightforward, we just list the results

fo, = Ufs Huato = {fs Huha f=uv.q,r,p,w Hh
Here two Poisson brackets are defined by
{u(x), u(y)to=—208(x —y) {ux), g(y»)}o=wdx —y)
{u(x), r(y)to=—péx —y) {v(x), v(M}o = —205(x — y)
{v(x), g(M}o = —wd(x —y) {v(x), r(M}o= péx —y)
{g(x), r(»}o=—200+ H)d(x — y).
All other brackets vanish and
{fulx),u(y)}1 = (83 —(H+h)oH +h)+ud+0u+ (H+h) +2(H+h)0)6(x —y)
{u@), v(y)}s = (—wdp —wr +qp)s(x — y)
{u(x), g(»h = (—wd* — wd(H + h) — wu + qd + g(H + h)5(x — y)
{uCx), r(yh =0 —H —h)@p +r)+up)d(x —y)
{fu(x), w(y)}1 = (—wd +¢q)é(x — y) {u(x), H(y)hh = %(3 —H —h)dd(x —y)
{u(x), p(Mh = —ré(x —y) {u(x),h(y)}h = %(3 —H —h)ds(x —y)
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), vl = % — (H = hI(H — h) +vd + dv — (H — h)x — 2(H — h),3)8(x — y)

{v(x), g} =0+ H —h)Ow +q) + wv)d(x —y)

@), rM} = (—pd®+ pd(H —h) — pv+r(@ — H + h)8(x — y)

L), w1 = —g8(x — y) {v(x), Hy)h = =30 + H — h)d8(x — y)

{v(x), p(M} = (=pd +r)d(x —y) ), h(Mh =30+ H —hds(x —y) (3.3)

{g(x), g(»)}h = —wiwd(x — y) {g(x), w(y)}1=0

{q), r(M} =[0°— 9°H — H3? + hyy + 20,0 + 0v 4+ ud — Hu +v) — h(v — u)
+(H + h)d(H — h)]8(x — y)

{gx), p(N}1=(0—H —h)d —v+u)d(x—y) {g(x), h(»)}1 = —3wds(x — y)

{g(x), H)} = (Gwd — q)8(x — y) {r(x),r(y} = —popd(x —y)

{r), wMWh =@+ H—-h)d+v—u)d(x—y) {rx), p(»}1=0

{r(x), Hyh = (—3p3 +r)8(x — y) {r(x), h(»)}h = —1pds(x — y)

{wx), w(y)}1=0 {wx), p(N}h =2(—0 + H)s(x — y)

{wx), H(y)}1 = —wd(x — y) {w(x),h(y)}1=0 {p(x), p(M} =0

{p(x), H(y)}r = pd(x —y) {p(x),h(y)}r=0

{H(x), H(y)} = —38(x —y) {H(x), h(y)}1=0 {h(x), h(y)}1 = —035(x — ).

Hamiltonians may be calculated most easily from

2
H, = — /tr reg L"?) dx Vn>1
n

where tr and res mean taking matrix trace and the coefficient of theadetnrespectively.
The operator is defined in equation (3.2).

The cIassicaIWf) algebra comes into play with the following observation: if we do
the reductiom: = O for the Poisson algebra (3.4), we obtain

{u@), u(»)} = Go°— 2HOH +ud + du + 3H. + SH0)5(x — y)

{u(x), v(»)} = (—wdp — wr +gp — (3% — *H — HI* + HIH))S(x — y)

(ux), g} = (—wd?> — wdH — wu +qd +gH — ;1‘(8 — H)dw))d(x — y)

{u@), r(»}=(@— H)@p+r)+up— 3@ — H)Ip)s(x —y)

{u@@), w(y}=(—wd +¢g)d(x —y) {u(x), p(»)} = —ré(x —y)

{u(x), H(y)} = 3(3 — H)38(x — y)

), v} = (9% — SHIH +vd + dv — SH,, — SH3)3(x — y)

), g} = CGo*w + 2How + g + Hqg + wv)d(x — y)

{v(x), r(»)} = —(pd*+ 33°p — pdH + pv + s Hdp —rd + rH)8(x — y)

{v(x), pP(M} = (—=pd +1r)d(x — y) {fv(x), w(y)} = —gd(x — y) (3.4)
{v(x), H(y)} = =30 + H)3s(x — y) {g(x), q(»)} = —3widws(x — y)

{gx), r(»)} =[0°—8*H — H3* + dv + ud — H(u +v) + HOH + Jwdpls(x — y)
{g(x), p(»)} = (0 — H)d —v+u)d(x —y) {g(x), w(y)} =0

{g(x), Hy)} = Gwd — q)8(x — y)

{r(x), w()} =0 —H)d+v—u)d(x —y) {r(x),r(»)} = —3paps(x — y)
{r@), Hy)} = —5(pd — r)d(x — y) {r@), p(»}=0
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{w), p(N} =2(=3 + H)é(x — y) {w), w(»} =0

{wx), H(y)} = —wd(x — y) {p(x), p(»} =0

{p(x), H(y)} = pd(x — y) {H(x), H(y)} = —95(x — y).

This algebra is nothing but the classicmﬁz) algebra (2.1) with the fields redefined by
T=u+v—H2—pw v="v p=7p w=uw
H=H qg=q r=r.

Remark We should emphasize that the reduction involved here is the standard Dirac
reduction (see, for example, [17]).

Thus, we rediscover the classidaﬁz) algebra from the viewpoint of integrable systems.
Because of this equivalence, we also call the Poisson algebraa?4) The explicit form

of integrable hierarchy associated with it can be read off from the hierarchy (3). Here, we
just give the first non-trivial flow:

uy = 2(—HH; + Hyx + 2u, — wp, — wr + gp)
v = 3(—HH, + He + 20, —w,p + wr +gp)
q: = %(—wa—i-u)xx—i—qu—i—wa—2Hq+wu—wv) (3.5)
ry = 3(Hpx + pxx +2ry — pHy — pu+ pv + 2rH)
w, =p, = H =0.
Remark We note that in the above system the time evolution of the fiéldsp, H)
is trivial. This means that the dynamical system may be reduced to the submanifold of

(u, v, q,r). In fact, this is a general phenomenon: the whole hierarchy is reducible to the
submanifold(u«, v, g, r) (see [5]).

4. The free field realization of the W, algebra

For a givenW algebra, it is important to construct a free field realization. As is well known,
the Miura-type map serves as a free field realization in many cases. Thus, to construct such
a realization for ouer) algebra (3.4), we start with the derivation of Miura maps for the
related hierarchy.

Let us make the following factorization [11, 5]:

L=@—-M)0Q—N)
where L is the matrix Schidinger operator given by (3.2 = [% :2], N=[" o1

mo

Then, the transformation between field variables, which is a Miura map, reads

u=gimi+ks—mqy v=In+ gomy —my,
q = gin + kmy — ny r=1Imi+ gos — sy w=k+n (4.2)
p=l+s H = 3(g1+my— g2 —mp) h=3(g1+ g2+ m1+ma).

The modified Poisson bracket may be calculated from the bracket directly following [11, 5].
The resulting non-vanishing brackets are given by

{mi(x), m;(y)} = —98(x — y) {m;(x),n(y)} = £nd(x —y)
{mi(x),s(y)} = Fsé(x — y) {n(x),s(y)} = (=9 +my+ma)d(x —y)
{gi(x), gi(y)} = —38(x — y) {gi(x), k(y)} = £kd(x — y)

{gi(x), [(y)} = Fsé(x —y) {k(x), 1(y)} = (=9 + g1+ g2)8(x — y)

(4.23)

(4.20)
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wherei =1, 2.

It can be directly verified that the Miura map (4.1) is a Hamiltonian or Poisson map.
That is, it maps the modified Poisson bracket ¢45) to the Poisson bracket (3.3).

Up to now, all these are known and standard (see [11,5]). However, we note that
unlike the scalar case, the present Miura map (4.1) does not supply us with a free field
realization for the Poisson algebra (3.3) although it does simplify this algebra greatly. To
obtain such a realization, we need to introduce further coordinate transformations. Since our
Lax operator has been factorized already, we are not able to obtain further transformations
via the factorization. To proceed, we notice the special structure of the Poisson algebra
(4.2a, b): it consists of two closed subalgebras d.2nd (4.2). Thus, we only need to
work on one of them, say the subspaee;, m,, n, s) with the algebra (42). Now, our
observation is that the following transformation

My = mq+ moy Moy =mq — My n=n S=s (4.39)
maps (4.2) to

{ma(x), m1(y)} = —208(x — y) (4.49)
{m2(x), ma(y)} = —208(x — y) {ma(x), n(y)} = 218(x — y)

_ _ _ _ _ _ (4.40)
{ma(x),s(y)} = —256(x — y) {n(x),5(y»)} = (=0 +m2)d(x — y).

The nice feature here is that the Poisson bracket algebra)(4s2decoupled by the
transformation (4.3). That is, the algebra (4¢4b) consists of two parts: & (1) current
m1 and thesl(2) current algebra (48). Thus, we may use Wakimoto construction [20]
to get the free field realization. The same device works with the other subgpagel).
Summarizing, we have

iv=§  me=~2+28y  i=-py +y-vVya  5=p (4.3)
and

Bi=aitg  L=gsi-s  k=k 1=l (4.59)
g1=¢ g2 =~2u+ 2y k=—vn?+n, —~2un 5=w. (4.%0)

The final bracket is defined in the coordinatésc, y, 8, ¢, i, n, v) by

£, EM} ={t(x), ¢(y)} = —205(x — y)
{o(x), ()} = {n(x), n(y)} = —038(x —y) (4.6)
{y), B} ={nx), v(y)} = —6(x — y).

Thus, we reach the free field realization for the Poisson bracket algebra (3.3). We stress
that the transformations (4.1), (4.3) and (4.5) together serve as the mapping to a free field
realization.

Next we turn to our main object: the classid& 2 algebra. Since this Poisson algebra
is obtainable from the more general one (3.3) by reduction, we expect that some kind of
reduction or constraint of the Miura map (4.1) simplifies the algebra (3.4). Thus, let us first
do the following recoordinating:

(m1,mo,n,s, g1, 82, k, 1) — (my,mp, n,s, g1,k, 1, E) 4.7)
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where E = mq + my + g1 + g2 Then we perform the Dirac reductioi = 0 for the
transformed algebra. Under this new coordinate, the algebra becomes

{mi(x), mi(y)} = {g1(x), g1(3)} = =398 (x — y)

{m1(x), ma(y)} = {m; (x), g1(3)} = —398(x — y)

{m;(x), n(y} = £n8(x — y) {m;(x),s(y)} = Fs8(x — y)
(n(x),s(y)} = (=0 +my+m2)d(x —y)

{g1(x), k(»)} = k8(x — y) {g1(x), 1))} = 18(x — y)
{k(x),1(y)} = (=9 + 2g1 +m1 +m2)8(x — y).

(4.8)

Using the transformation (4.1) and taking the above reduction into consideration, we
conjecture that the Poisson bracket algebra (4.8) is related to the allg}éf?re(3.4) by
the following transformation:

u=gims+ks —mq v=1In—mo(my+my+ g1) — my,
q = gn +kmy —ny r=1Imy —s(g1+my+mz) — sy (4.9)
w=k+n p=I1l+s H = g1+ m.

This conjecture can be verified by tedious but straightforward calculation.

As above, this realization does not qualify as a free field realization and we need
to simplify (4.8) further to reach such a position. Our observation is that the following
coordinate transformatioGny, mo, n, s, g1, k, 1) — (i1, o, i, 3, 81, k, [)

my = mq+mo My = mq — mo n=n S=s
. . . (4.10)
g1 =2g1+m1+my k=k =1
brings (4.8) into the following form:
{1 (x), w1 ()} = —98(x — y) (4.118)
{2(x), i2(y)} = =238 (x — y) {ia(x), A(y)} = 248(x — ¥)
{i2(x), §(»)} = —258(x — y) {A(x), $()} = (=8 + m2)8(x — y)
{81(x), 81(3)) = —208(x — y) {81(x), k(»)} = 2k8(x — y)
{81(0), 1(y)} = —208(x — y) {k(x), I} = (=8 + §1)8(x — y).

We see that the above algebra consists of three closed subalgebtagt) aurrent iy
and two copies 0f/(2) current algebra (4.2 c). Once again, we may use the Wakimoto
construction directly for the algebra (4d,», ¢). It reads as

(4.11b)

(4.1%)

my =20 my = \/291 + 20,03 n= —92293 + 62, — \/29192 S =03 (4.12)
g1= \/2191 + 20,03 k= —1922293 + o, — \/2191192 [= U3 .

and the final algebra in coordinatés 6y, 6, 03, ¥, 91, 92, U¥3) IS

0x), 00} ={Px), ()} =—-05(x —y)
{01(x), O2(»)} = {P1(x), V2(¥)} = =38 (x — y) (4.13)
{62(x), 03()} = {V2(x), D3(y)} = —8(x — y).

Then, the composition of (4.9) and (4.10) with (4.12) supplies us the free field realization
for the W,? algebra (3.4).
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Remarks

(1) As we can see, the first step of the construction is systematic while the remaining
steps aread hoc Thus, it is interesting to find an entire systematic method to rediscover
the above results.

(2) This construction provides us with, as a by-product, a new proof of the Hamiltonian
nature of the structure (3.4).

(3) The modified hierarchies for each set of coordinates are easily calculated.

(4) With the free field realizations we may construct quantized algebras for the Poisson
algebra (3.4) and (3.3).

5. Toda-type theories connected WitWVf)

In this section we shall construct the Toda-type theory connected witWVﬁﬁ)ealgebra.
Precisely speaking, we shall construct a Toda theory which corresponds to two copies of
the Wf) algebra: one copy is holomorphic, the other is anti-holomorphic. The construction
is based on the following observations. Recall that Wéasis of the holomorphic copy
of Wf) used in [3] is arranged in the following Drinfeld—Sokolov gauge:
0 0 -1 0
|0 0 0o -1
0= T, GW U Z
Y T» G —-U
Similarly we can have & basis of the anti-holomorphic copy (Wéz) which can also be
arranged into the Drinfeld—Sokolov gauge
0 0 Ty Y
- | o 0 G T,
=11 0 @ o
o -1 z -U
Let g be the solution of the following linear systems:
g+ 0g=0 0-g+g0=0.
We can easily see that the matgxcan be realized by the matrix elements

g = Z fift

where f/ and f/ satisfy
0i=-tle  Wl=-? a=12

and fib have a similar property. Define the main diagonal subdetermimgntsf the matrix
g, i.e

g - &
Aa: . .
g ... g8

and, in particularAg = 1, we can prove, by tedious but direct calculations, that the matrix
T with the elements (hera,(i, j) denotes the algebraic co-minor of, with respect to

g/)
Ap1 <A Ay, a)
Ty =\
a l=1 (171
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satisfy the equations
3:T = £(30.P + exp(F3 add) (Wi + u)T (5.1)
where we have used the following abbreviations of notation:

3
©=) ¢'H;  ¢=InA,

i=1
3 4
W= signi — j)v;t A E 1/,;:%,&4-1)
j=1i=1 )
» Asi1(a+1,a)
wo= Y signG - Ay = SR 2

Aq

-
Il
[iN
Il
AN

H;, E; and F; are the standard Chevalley generators of the Lie algdiraritten in the
defining representatiom is the matrix

2 -1 0 0
1 2 -1 0
A=lo -1 2 o
0 0 -1 0

and 4 are defined as
3
=3 > [E.E]  p-=-3) [F.Fl
i,j=1 i,j=1

Equation (5.1) can be viewed as the Lax pairmfz) Toda theory, with the explicit
solution of the Toda fields given by equation (5.2). The Toda field equation can be easily
obtained from the compatibility condition of the Lax pair (5.1). The result reads

0,0-® + [ (W), Wy ] + [ (1), puy] =0
0-W, — [y, €47 (W)] = 0
o W — [ (W), u] = 0.
In terms of the component fields, the above equations r&aid the Cartan matrix ofi3)
3

4
d,0_¢7 — > signi — j)signk — )yt Ayv Aye’ + Y o'e’Ki; =0

ik=1 I=1I#]

4
— > signk — j v Agje’ =0

4
dary; — Y signk — )Yy Ay’ =0
k=1

3
o’ = exp(— Z(biKij) (=123
i=1

oyl =0y, =0.

Remarks
(1) The above construction of Toda-type theory is essentially an extension of the
technique ofW surfaces, which was first developed by Gervais and Matsuo [13] in the
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standardWy cases. Thus the construction given here not only presentwﬁﬁ)eToda
equation but also th&/,> surface in the sense of [13].

(2) Toda-type equations associated with genwﬁf algebras have already been studied
by one of the authors (LC) and collaborators in several papers [14]. However, those
equations restricted to the casef= 4 lack the fieldswf, thus do not really correspond
to Wf) algebra. The present equations overcome this shortcoming.

(3) The functionsf! and £ can be shown to satisfy two commuting families of classical
exchange algebra far = 1, 2. For example, the holomorphic family of exchange algebra
reads

{F100, ) = =2 100 £ ) signx — y) + £ () fEI0G — O — y)

—0(j —)O(y —x)] a,b=12 (5.3)
where
z (a —b =0)
0la—b)=140 (a—b <0 sign(a — b) = 0(a — b) — (b — a). (5.4)
1 (a—b>0)

Such exchange algebras can be used to reconwﬁbtalgebra since one can always write
the W basis ofo’ algebra in terms of appropriate determinants consisting of the above
functions. This construction oW algebras can also be extended to any classli’qél
algebra [8]. Since the classical exchange algebra is the origin of the quantum group, it may
also be possible to relate quantudhalgebras and quantum groups in terms of a quantized
version of such constructions.

(4) The canonical Poisson structure for tWéZ) Toda fields can also be obtained from
the exchange relation (5.3) and the explicit solution (5.2) of the field equations.

6. Conclusions

In this paper we have constructed both the integrable evolution equations and the
corresponding Toda theory associated with Wg) algebra. Miura maps are presented

in connection with thve) evolution equations, which in turn give a free field realization

of W,? algebra.

We have shown that tth) algebra, for which the exchange of evolution parameter
approach failed, can be studied through the matrix Lax operator. This may be true for
the general classicalV’ and deserves further consideration. Also, though the problem
considered here is only a specific case of Wiealgebra—evolution equation—Toda system
connections, the constructions presented here again assure the widely adopted conjecture
that, given aW algebra, there must exist an associated system of evolution equations and
a corresponding Toda theory.

Besides what has been considered in the main text of this paper, we would like to
mention that there are still some unsolved problems, such as the connection between the
variables appearing in the evolution equations and the Toda fields. Awﬁ’iealgebra is
much more complicated than the standéifg series, one should reasonably feel that such
connections are not so straightforward as in the standard case.
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